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Abstract—Performance antipatterns are well-known bad de-
sign practices that lead to software products suffering by poor
performance. A certain number of performance antipatterns
has been defined and classified, and refactoring actions have
also been suggested to remove them. In the last few years, we
have dedicated some effort to the detection and refactoring of
performance antipatterns in software models. A specific charac-
teristic of performance antipatterns is that they contain numerical
parameters that may represent thresholds referring to either
performance indices (e.g. a device utilization) or design features
(e.g. number of interface operations of a software component).
In this paper we analyze the influence of such thresholds on the
capability of detecting and refactoring performance antipatterns.
In particular: (i) we analyze how a set of detected antipatterns
may change while varying the threshold values, and (ii) we discuss
the influence of thresholds on the complexity of refactoring
actions.

I. INTRODUCTION

In the software development domain there is a high interest
in the early validation of performance requirements because
it avoids late and expensive fix to consolidated software
artifacts. Model-based approaches, pioneered under the name
of Software Performance Engineering (SPE) by Smith [1], aim
at producing performance models early in the development
cycle and using quantitative results from model solutions to
refactor the design with the purpose of meeting performance
requirements [2].

Nevertheless, the problem of interpreting the performance
analysis results is still quite critical. A large gap in fact exists
between the representation of performance analysis results
and the feedback expected by software designers. In fact, the
former usually contains numbers (e.g. mean response time,
throughput variance, etc.), whereas the latter should embed
design alternatives useful to overcome performance problems
(e.g. split a software component in two components and
re-deploy one of them). The results interpretation is today
exclusively based on the analysts’ experience, and therefore
it suffers of lack of automation.

Figure 1 illustrates a model-based software performance
analysis process. It includes three main operational steps:
(1) the Model2Model Transformation step takes as input an
annotated1 software model and generates a performance model
[4]; (2) the Model Solution step takes as input a performance

1Software model annotations support the performance analysis by specify-
ing parameters like workload, resource demands, etc. [3]

model and produces a set of performance indices [5]; (3)
the Performance Analysis Results Interpretation and Feedback
Generation macro step takes as input both the software model
and the performance indices in order to detect possible per-
formance problems2, and it provides a refactored (annotated)
software model where problems have been removed.
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Fig. 1. Model-based software performance analysis process.

Few approaches have been recently introduced for this
macro step [6], [7] among which we have been working on
the detection and the refactoring of performance antipatterns
[8], [9], [10].

Performance antipatterns [11] are well-known bad design
practices that lead to software products suffering by poor
performance, and they include solutions that let the software
architects devise refactoring actions.

The macro step of Figure 1 has been detailed with the two
main steps that we have envisaged in our approach, that are:

2A performance problem is an unfulfilled requirement, e.g. the estimated
response time of a service is higher than the required one.



performance antipatterns detection and refactoring. A further
preliminary step has been made explicit in Figure 1, i.e. the
thresholds binding, and it represents the focus of this paper.

In fact, a specific characteristic of performance antipat-
terns is that they contain numerical parameters that represent
thresholds referring to either performance indices (e.g. high,
low device utilization) or design features (e.g. many interface
operations, excessive message traffic). The thresholds binding
step takes as input parametrized antipatterns specifications,
determines the numerical values for antipattern thresholds and
gives as output executable antipatterns specifications3.

The goal of this paper is to analyze the influence of
such thresholds on the capability of detecting and refactoring
performance antipatterns. In particular: (i) we analyze how
a set of detected antipatterns may change while varying the
threshold values, and (ii) we discuss the influence of thresholds
on the complexity of refactoring actions.

In order to complete the description of Figure 1, we remark
that the whole process may be iterated several times to find the
model that best fits the performance requirements. In fact, sev-
eral antipattern instances may be detected in a software model,
and several refactoring actions may be available for solving
each antipattern. Hence, at each iteration the antipattern-based
refactoring actions are aimed at building new (refactored)
software models that undergo the same process.

The remainder of the paper is organized as follows. Section
II provides some background on the thresholds introduced
for the specification of performance antipatterns. Section III
analyzes the thresholds influence through an example where
experimental results arise the emerging issues in this context.
Section IV concludes the paper by discussing the most chal-
lenging research topics in this area.

II. THRESHOLDS IN PERFORMANCE ANTIPATTERN
SPECIFICATION/REPRESENTATION

In literature several approaches have been introduced to
specify and detect code smells and antipatterns [12], [13],
[14], [15], [16]. They range from manual approaches, based
on inspection techniques [17], to metric-based heuristics [18],
[19], using rules and thresholds on various metrics [20] or
Bayesian belief networks [21]. On the contrary, our approach
intends to work at the design level and it can be applied early
in the software life-cycle.

Since the performance antipatterns had been originally
defined in natural language [11], we first tackled the problem
of providing a more formal representation by introducing first-
order logic rules that express a set of system properties under
which an antipattern occurs [22]. More recently we undertook
the problem of removing performance antipatterns detected
in software models by introducing a role-based approach that
allows to formalize the refactoring embedded into performance
antipattern definitions [23].

Performance antipatterns are very complex (as compared
to other software patterns) because they are founded on
different characteristics of software systems, spanning from

3“Executable” means that these resulting specifications can be used in the
detection step to browse the software model.

static through behavioral to deployment, and they additionally
include thresholds on design features and performance indices.
In fact, the characterization of antipattern parameters is related
to design characteristics (e.g. many usage dependencies, exces-
sive message traffic) and/or to performance results (e.g. high,
low utilization) we interpret as thresholds.

Since we cannot avoid thresholds in antipatterns definition,
the detection and the refactoring activities are heavily affected
by the multiplicity and the estimation accuracy of thresholds
an antipattern requires. In this direction, we are investigating
the number and the type of thresholds the antipatterns’ formal-
ization requires.

Table I contains a list of performance antipatterns [11].
Each row represents a specific antipattern that is characterized
by four attributes: antipattern type, name, and number of de-
sign/performance thresholds. We have partitioned antipatterns
in two different types [22]: the ones detectable by single values
of performance indices (such as mean, max or min values),
named Single-value performance antipatterns, and the ones
requiring the trend (or evolution) of performance indices along
the time, named Multiple-values performance antipatterns. Due
to these characteristics, the performance indices needed to
detect the latter type of antipatterns must be obtained via
simulation or monitoring.

TABLE I. OVERVIEW OF ANTIPATTERNS THRESHOLDS.

Antipattern Thresholds
Type Name Design Performance

Single-value

Blob 2 2
Extensive Processing 2 2
Empty Semi Trucks 2 1
Excessive Dynamic Allocation 2 1
“Pipe and Filter” Architectures 1 2
Circuitous Treasure Hunt 1 1
Tower of Babel 1 1
Concurrent Processing Systems 0 5
One-Lane Bridge 0 1

Multiple-values
The Ramp 0 2
Traffic Jam 0 1
More is Less 0 0

From Table I we can notice that: (i) some antipatterns
include both design and performance thresholds such as Blob,
Extensive Processing, etc.; (ii) some antipatterns only in-
clude performance thresholds such as Concurrent Processing
Systems, One-Lane Bridge, etc.; (iii) finally there is one
antipattern (i.e. the More is Less) without thresholds because
it lays on configuration parameters (database connections,
web connections, etc.) that are detected by run-time software
analysis.

The binding of thresholds to concrete numerical values
(e.g. 0.8 may denote high utilization for a hardware resource)
is a crucial point of the whole approach, since they must be
suitably estimated.

Different sources of information can be used to support
the binding of thresholds such as: (i) the system requirements;
(ii) the domain experts knowledge; (iii) the evaluation of the
system under analysis. In [22] we provided some heuristics to
calculate these thresholds.

In the following we present the Blob performance an-
tipattern example [11], i.e. the shaded entry of Table I. A
Blob occurs when a component requires a lot of information
from other ones, it generates excessive message traffic that



lead to over utilize the device on which it is deployed or the
network involved in the communication. Table II reports the
thresholds involved in the Blob specification [22]: two thresh-
olds (ThmaxConnects, ThmaxMsgs) refer to design features,
whereas the other ones (ThmaxHwUtil, ThmaxNetUtil) are
related to performance indices.

TABLE II. THRESHOLDS SPECIFICATION FOR THE BLOB
ANTIPATTERN.

Threshold Description

Design ThmaxConnects Maximum bound for the number of con-
nections a component is involved

ThmaxMsgs Maximum bound for the number of
messages sent by a component in a
service

Performance ThmaxHwUtil Maximum bound for the hardware de-
vice utilization

ThmaxNetUtil Maximum bound for the network link
utilization

Heuristics for Blob thresholds can be defined as follows
[22]. ThmaxConnects can be estimated as the average number
of connections per component, by considering the entire set
of software components in the software system, plus the
corresponding variance. In a similar way, ThmaxMsgs can be
estimated as the average number of sent messages per software
component, plus the corresponding variance. ThmaxHwUtil

can be estimated as the average value of utilization per
hardware device, plus the corresponding variance. Similarly,
ThmaxNetUtil can be estimated as the average value of uti-
lization per network link, plus the corresponding variance.

Note that the binding of some thresholds is intrinsically
more difficult than others. For example, both The Ramp and
the Traffic Jam antipatterns refer to thresholds representing the
maximum feasible slope of the response time (or the through-
put) observed in consecutive time slots, and these values are
not easy to bind. Adaptive heuristics can be introduced to itera-
tively obtain more accurate threshold boundaries. For example,
in case of The Ramp and the Traffic Jam antipatterns, such
heuristics may exploit historical data (obtained by previous
performance analysis) to accurately tune the slope used as
boundary for the increase of response time and the decrease
of throughput.

III. INFLUENCE OF THRESHOLDS ON DETECTION AND
REFACTORING

In this section we discuss the influence of thresholds on the
detection and refactoring of performance antipatterns by means
of a case study in the e-commerce domain. We first describe the
E-Commerce System (ECS) software model and the numerical
results obtained from its performance analysis, then emerging
issues due to the variation of thresholds numerical values are
presented.

A. An illustrative example

ECS is a web-based system that manages business data
related to books and movies. We assume to have a multi-view
model, composed by Static, Dynamic and Deployment Views.
Several software components have been defined and connected
in the Static View (see Figure 2.a). Among all system services
we focus here on MakePurchase that is triggered whenever

a customer wants to purchase a book or a movie4. The
Deployment View (see Figure 2.b) shows the ECS allocation
of software components on hardware nodes. Service requests
from customers (client-side) pass through the Internet, and all
the nodes in the server-side are connected by means of a 100
Mb/s LAN. Finally, for sake of simplicity we assume that both
the client-side and the server-side are equipped with nodes
having the same hardware characteristics for processors and
disks.

We assume that a performance requirement has been de-
fined on the MakePurchase service as follows: its average
response time must not exceed 2 seconds under a workload
of 150 customers.

Performance annotations

In order to analyze the ECS performance, several parame-
ters must be defined:

(i) Workload characterization. A closed workload has been
defined for the considered scenario, and the number of users
for MakePurchase is 150, as stated in the requirement.

(ii) Service demands definition. Table III reports the average
service demands (expressed in seconds) for the considered
scenario. We suppose an average thinking time of 15 seconds
for customers, whereas all the other service demands are
obviously orders of magnitude lower than the thinking time.

TABLE III. ECS - MakePurchase SERVICE DEMANDS.

Node D(MakePurchase) [sec]

CustomerNode 15
WebServerNode 0.015

BooksDispatcherNode 0.008
MoviesDispatcherNode 0.062

BooksControlNode 0.1
MoviesControlNode 0.105

DatabaseNode 0.09

Performance analysis for the ECS

The performance analysis has been conducted by trans-
forming the software model into a Queueing Network (QN)
model [25], and by solving the latter with the JMT tool [26].

Table IV shows the resulting performance indices for the
ECS software model; in particular, the average response times
and utilizations of deployment nodes have been reported, as
well as the average response time of the MakePurchase service.

TABLE IV. ECS - RESPONSE TIMES AND UTILIZATIONS FOR THE
MakePurchase SERVICE.

RT [sec] U [%]
MakePurchase 17.16 -

CustomerNode 15 -
WebServerNode 0.017 13.11

BooksDispatcherNode 0.009 6.99
MoviesDispatcherNode 0.134 54.19

BooksControlNode 0.672 87.4
MoviesControlNode 0.934 91.77

DatabaseNode 0.396 78.66

As illustrated in Table IV the considered requirement is
violated because, under a workload of 150 users purchasing a

4For sake of space, in Figure 2 we do not report the Dynamic View of
the MakePurchase service. Readers interested to the dynamic view of ECS
services may refer to [24].



(a) Static View (b) Deployment View

Fig. 2. ECS - (Annotated) Software Model.

product, the mean time elapsed (in the server-side) for each
request (i.e. the average response time at the server-side) is
17.16 - 15 = 2.16 seconds, that is larger than the defined
requirement of 2 seconds.

Antipatterns detection and refactoring for the ECS

For sake of simplicity, in the following we only focus on
the Blob antipattern.

TABLE V. ECS - THRESHOLDS BINDING FOR THE BLOB
ANTIPATTERN.

Threshold Value

ThmaxConnects 5
ThmaxHwUtil 90%

Table V reports some thresholds involved in the Blob
antipattern specification. With these numerical values one
instance of Blob is detected, i.e. the MoviesController com-
ponent. Note that the MoviesCatalog component is not a Blob
instance since it has a number of connections lower than
ThmaxConnects (i.e. 5). Furthermore, although the BooksCon-
troller component has a number of connections larger than
ThmaxConnects, the utilization of the node on which it is
deployed (i.e. BooksControlNode, whose utilization is 87.4%)
is not larger than the ThmaxHwUtil threshold (i.e. 90%). For
similar reasons, the BooksCatalog component is not a Blob
instance.

As a refactoring action MoviesController is redeployed on
MoviesDispatcherNode. This leads to a response time of 1.98
seconds, that satisfies the requirement.

B. Emerging issues while varying thresholds

In this section we present an illustrative example whose ex-
perimental values for performance indices have been obtained
while varying the considered thresholds. In particular, we vary
ThmaxConnects in the interval [4, 6] and ThmaxHwUtil in the

interval [85%, 95%], and we observe the influence of these
variations on detection and refactoring activities.

TABLE VI. ECS - VARIATION OF BLOB THRESHOLDS.

Variation
Detected BlobsThmaxConnects ThmaxHwUtil

# From To From To

1 5 6 90% - {}
2 5 - 90% 95% {}
3 5 4 90% - {MoviesController,

MoviesCatalog}
4 5 - 90% 85% {MoviesController,

BooksController}
5 5 4 90% 85% {MoviesController,

MoviesCatalog,
BooksController,
BooksCatalog}

Table VI summarizes the set of detected Blob instances
while varying the numerical values of thresholds. The first
column (i.e. #) identifies the variation. Furthermore, for each
threshold the column From shows the initial value whereas the
column To shows the value that the threshold assumes after the
variation has been applied. Intuitively, the “−” symbol in the
To column indicates that no variation has been made for the
corresponding threshold value.

By increasing ThmaxConnects from 5 to 6 and/or
ThmaxHwUtil from 90% to 95% no Blobs are detected. Since
these thresholds represent upper bounds, it is evidently useless
to explore further variations in this direction. On the contrary,
while decreasing numerical values of thresholds we can notice
that the number of detected antipatterns increases. In fact, by
decreasing one or both of them (i.e. ThmaxConnects from 5 to
4 and/or ThmaxHwUtil from 90% to 85%) new Blob instances
are detected in addition to the MoviesController component,
up to the point that, with the variation #5, four Blob instances
are detected.

For sake of this paper experimentation, we do not perform
further decreases. In fact, it is not worth to indefinitely push



ahead the boundaries of thresholds variations, because false
positive antipatterns might emerge. In order to establish fair
boundaries more extensive experimentation is needed.

Blob instances have been refactored with the following
actions:

- redeploy: this action moves the identified Blob compo-
nent to the corresponding dispatcher node. For example, the
redeployment of MoviesCatalog means that the component
moves from MoviesControlNode to MoviesDispatcherNode.
Such refactoring action is aimed at improving the utilization of
the node where the Blob component was deployed. However,
ThmaxHwUtil refers to a performance index, hence we can
not ensure a priori that the utilization of the latter node will
be lower than ThmaxHwUtil after the redeployment.

- split: this action equally distributes the connections of
the identified Blob component between the latter one and
several new components that are deployed on the correspond-
ing dispatcher node. For example, the split of MoviesCatalog
means that a new component is introduced in the software
model and two connections have been moved to the new one.
Such a refactoring action is aimed at reducing the number of
connections of the Blob instance. Since ThmaxConnects refers
to a design feature, we can check by construction that the
number of connections of the Blob component and the new
one are lower than ThmaxConnects.

TABLE VII. ECS - VARIATION OF THE MakePurchase RESPONSE TIME
ACROSS DIFFERENT BLOB REFACTORINGS.

Average response time
# after Blob refactorings

3
MoviesController MoviesCatalog

redeploy split redeploy split
1.98 1.83 4.47 1.66

4
MoviesController BooksController

redeploy split redeploy split
1.98 1.83 1.84 1.91

5
MoviesController MoviesCatalog BooksController BooksCatalog
redeploy split redeploy split redeploy split redeploy split

1.98 1.83 4.47 1.66 1.84 1.91 1.86 1.85

Table VII summarizes the response times for the MakePur-
chase service while varying the threshold numerical values
(i.e. #3, #4, and #5) and applying the redeploy and split
refactoring actions5:

#3: After redeploying MoviesCatalog an average response
time of 4.47 seconds is obtained. This is the worst case and it
is due to the fact that the resource demand of MoviesCatalog
is too heavy for DispatcherMoviesNode that already hosts
MoviesDispatcher and UserController. This results in a sat-
uration of DispatcherMoviesNode in the refactored model.

By splitting MoviesCatalog an average response time of
1.66 seconds is obtained. This represents an improvement com-
pared to the one deriving from splitting MoviesController. This
is due to the fact that these two components have a different
resource demand hence their operations’ displacement lead to
different demands for the MoviesDispatcherNode. Moreover,
we can guarantee that the components involved in the splitting
action have a number of connections lower than the modified

5Note that performance indices have been obtained with the same model-
based performance analysis presented before.

ThmaxConnects threshold (i.e. 4). In fact, in the refactored
model, they only have 2 connections.

#4: After redeploying BooksController an average response
time of 1.84 seconds is obtained. This represents an im-
provement with respect to the one deriving from the first
redeployment action. Anyhow, we can not guarantee that all the
nodes involved in the redeployment action have an utilization
higher than or equal to the modified ThmaxHwUtil threshold
(i.e. 85%), hence we need a further performance analysis step
for the refactored model.

By splitting BooksController an average response time of
1.91 seconds is obtained. This does not represent an im-
provement compared to the one deriving from splitting Movi-
esController. Anyhow, we can guarantee that each component
involved in the splitting action has a number of connections
lower than the original ThmaxConnects threshold (i.e. 5). In
fact, in the refactored model, they only have 2 connections.

#5: After redeploying BooksCatalog an average response
time of 1.86 seconds is obtained, whereas by splitting it the
average response time is 1.85 seconds. Both these refactoring
actions lead to the same remarks of the previous action (i.e.
#4).

Several observations regarding the antipatterns refactoring
derive from our experimentation.

If a refactoring action refers to a threshold related to a
design feature (e.g. number of connections) we can ensure that
its application leads to the removal of the antipattern instance.
On the other hand, if a refactoring action refers to a threshold
related to a performance index (e.g. hardware nodes utilization
or throughput) we can not ensure that its application leads to
the actual removal of the antipattern instance, in fact we need
a further performance analysis step for the refactored model.

Since the specification of some antipatterns only contains
thresholds related to performance indices, we think that it is
more difficult to refactor such antipatterns rather than the ones
referring also to design features.

Finally, we must also consider possible legacy constraints
that might restrict the set of applicable refactoring actions.
In our example, let us suppose that MoviesController can not
be refactored since it is a legacy component, hence the split
action on that component can not be applied anymore, and we
can only apply the redeploy action.

IV. CONCLUSION

In this paper we analyzed the influence of numerical
thresholds on the capability of detecting and refactoring perfor-
mance antipatterns. In particular we have shown on a simple
example how the set of detected antipatterns instances may
change while varying the threshold values, and we discussed
the influence of thresholds on the complexity of refactoring
actions.

It is certainly of great interest to extend the experiment
reported here to other performance antipatterns. For this goal,
more complex examples shall be considered. Instead, the ex-
tension of this work to different antipatterns that use thresholds
in their definitions needs to be carefully planned, because
domain-specific characteristics could be exploited.



As future work we also intend to introduce confidence val-
ues that may be associated to antipattern instances to quantify
the probability that the numerical threshold values support the
actual antipattern presence. Furthermore, some fuzziness can
be introduced for the evaluation of the threshold values [27]
thus to make antipattern detection rules more flexible.
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